CMSC201
Computer Science I for Majors

Lecture 03 - Operators

Last Class We Covered

- Variables
- Rules for naming
- Different types
- How to use them
- Printing output to the screen
- Getting input from the user
- Mad Libs

Any Questions from Last Time?

3

Today's Objectives

- To learn Python's operators
- Arithmetic operators
- Including mod and integer division
- Assignment operators
- Comparison operators
- Boolean operators
- To understand the order of operations

Pop Quiz!

- Which of the following examples are correct?

1. $500=$ numstudents
2. numStudents $=500$
3. numCookies * cookiePrice = total
4. mpg = miles_driven / gallons_used
5. "Hello World!" = message
6. _CMSC201_doge_ = "Very learning"
7. 60 * hours $=$ days * 24 * 60

Pop Quiz!

- Which of the following examples are correct?
$\times 1.500=$ numStudents
$\sqrt{ }$ 2. numstudents $=500$
$\times 3$. numCookies * cookiePrice $=$ total
$\sqrt{ }$ 4. mpg $=$ miles_driven / gallons_used
x 5. "Hello World!" = message
$\checkmark 6$. _CMSC201_doge_ $=$ "Very learning"
$\times 7$. 60 * hours $=$ days * 24 * 60

Python's Operators

Python Basic Operators

- Operators are the constructs which can manipulate and evaluate our data
- Consider the expression:

Types of Operators in Python

- Arithmetic Operators
- Assignment Operators
- Comparison Operators
focus of
today's lecture
- Logical Operators
- Membership Operators
- Bitwise Operators
- Identity Operators

Operators - Addition \& Subtraction

- "Lowest" priority in the order of operations -Can only change this with parentheses
- Function as they normally do
- Examples:

1. cash = cash - bills
2. $(5+7) / 2$
3. $(((2+4) * 5) /(9-6))$

- Higher priority in the order of operations than addition and subtraction
- Function as they normally do
- Examples:

1. tax $=$ subtotal * 0.06
2. area $=P I$ * (radius * radius)
3. totalDays $=$ hours $/ 24$

Operators - Integer Division

- Reminder: integers (or ints) are whole numbers - What do you think integer division is?
- Remember division in grade school?
- Integer division is
- Division done without decimals
- And the remainder is discarded

5 | 025 |
| :---: |
| $-\frac{128}{3}$ |
| $-\frac{10}{28}$ |
| $\frac{-25}{3}$ |

Examples: Integer Division

- Integer division uses double slashes (/ /)
- Examples:

1. $7 / 5=1.4$
2. $7 / / 5=1$
3. $2 / 8=0.25$
4. $2 / / 8=0$
5. $4 / / 17 / / 5=0$
evaluate from left to right

Operators - Mod

- Also called "modulo" or "modulus"
- Example: 17 \% $5=2$
- What do you think mod does?
- Remember division in grade school?
- Modulo gives you the remainder
- The "opposite" of integer division

Examples: Mod

- Mod uses the percent sign (\%)
- Examples:

1. 7 \% $5=2$
2. $5 \% 9=5$
3. $17 \% 6=5$
4. $22 \div 4=2$
5. $48692451673 \% 2=1$

Modulo Answers

- Result of a modulo operation will always be:
- Positive
- No less than 0
- No more than the divisor minus 1
- Examples:

1. $8 \div 3=2$ no more than the
2. $21 \div 3=0$
3. $13 \div 3=1$ divisor minus 1
no less than zero

Operators - Exponentiation

- "Exponentiation" is just another word for raising one number to the power of another
- Examples:

1. binary8 $=2$ ** 8
2. squareArea $=$ length $* * 2$
3. cubeVolume $=$ length $* * 3$
4. squareRoot $=$ num ** 0.5

Arithmetic Operators in Python

Operator	Meaning
+	Addition
-	Subtraction
*	Multiplication
$/$	Division
$/ /$	Integer division
\vdots	Modulo (remainder)
$* *$	Exponentiation

Order of Operations (Arithmetic)

- Expressions are evaluated from left to right

Operator(s)	Priority
* / // \%	highest
$+\quad-$	lowest

- What can change this ordering?
- Parentheses!

Assignment Operators

Basic Assignment

- All assignment operators
- Contain a single equals sign
- Must have a variable on the left side
- Examples:

1. numDogs $=18$
2. totalTax $=$ income * taxBracket
3. numPizzas $=$ (people // 4) + 1

- You can simplify statements like these count $\quad=$ count +1 amountLeft = amountLeft // 2
- By combining the arithmetic and assignment count $\quad+=1$ amountLeft //= 2
- You can do this with any arithmetic operator

Combined Assignments

- These operators work only if the variable is the first thing to the right of the assignment
percent $=$ int(input("Enter percent:
\# convert the percentage to a decimal percent /= 100
- The last line is the same as this line percent $=$ percent / 100

Comparison Operators

Vocabulary

- Comparison operators
- Relational operators
- Equality operators
- Are all the same thing
- Include things like $>$, $>=,<,<=,==, \quad!=$

Comparison Operators

- Always return a Boolean result
- True or False
- Indicates whether a relationship holds between their operands

Comparison Examples

- What are the following comparisons asking?
$a>=b$
- Is a greater than or equal to b?
$a==b$
- Is a equivalent to b ?

Comparison Operators in Python

Operator	Meaning
$<$	Less than (exclusive)
$<=$	Less than or equal to (inclusive)
$>$	Greater than (exclusive)
$>=$	Greater than or equal to (inclusive)
$==$	Equivalent to
$!=$	Not equivalent to

Comparison Examples (Continued)

- What do these evaluate to if $\mathrm{a}=10$ and $\mathrm{b}=20$?
a $>=b$
- Is a greater than or equal to b?
- Is 10 greater than or equal to 20 ?
- FALSE

Comparison Examples (Continued)

- What do these evaluate to if $\mathrm{a}=10$ and $\mathrm{b}=20$?
$\mathrm{a}=\mathrm{b}$
- Is a equivalent to b ?
- Is 10 equivalent to 20 ?
- FALSE

Comparison vs Assignment

- A common mistake is to use the assignment operator (=) in place of the relational (==)
- This is a very common mistake to make!
- This type of mistake will trigger an error in Python, but you may still make it on paper!

Equals vs Equivalence

- What does $\mathrm{a}=\mathrm{b}$ do?
-Sets a equal to b
-Changes a 's value to the value of b
- What does $\mathrm{a}=\mathrm{b}$ do?
-Checks if a is equivalent to b
-Does not change the value of \mathbf{a} or \mathbf{b}

Evaluating to Boolean Values

Comparison Operators and Simple Data Types

- Examples:
$8<15$ evaluates to True
6 ! = 6 evaluates to False
$2.5>5.8$ evaluates to False
$5.9<=7.5$ evaluates to True

"Value" of Boolean Variables

- When we discuss Boolean outputs, we think True and False
- We can also think of it in terms of 1 and 0
- True $=1$
- False $=0$

"Value" of Boolean Variables

- Other data types can also be seen as "True" or "False" in Python
- Anything empty or zero is False
- "" (empty string), 0, 0.0
- Everything else is True
- 81.3, 77, -5, "zero", 0.01
- Even "0" and "False" evaluate to True

Logical Operators

Vocabulary

- Logical operators
- Boolean operators
- Are the same thing
- Include and, or, and not

Logical Operators

- There are three logical operators:
- and
- or
- not
- They allow us to build more complex Boolean expressions
- By combining simpler Boolean expressions

- Let's evaluate this expression bool1 = a and b

Value of a	Value of b	Value of bool1
True	True	
True	False	
False	True	
False	False	

Logical Operators - and

- Let's evaluate this expression booll = a and b

Value of \mathbf{a}	Value of \mathbf{b}	Value of booll
True	True	True
True	False	False
False	True	False
False	False	False

- For a and b to be True, both a and b must be true

Examples of and

$a=10$ Prints:
$b=20$
$c=30$

True True True

ext $=a<b$
ex $=\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$
$e x 3=a+b==c$ and $b-10=a$ and $c / 3=a$
print (ex, ex, ex)

Logical Operators - or

- Let's evaluate this expression $\mathrm{bool2}=\mathrm{a}$ or b

Value of a	Value of b	Value of bool2
True	True	
True	False	
False	True	
False	False	

Logical Operators - or

- Let's evaluate this expression $\mathrm{bool2}=\mathrm{a}$ or b

Value of \mathbf{a}	Value of \mathbf{b}	Value of bool2
True	True	True
True	False	True
False	True	True
False	False	False

- For \mathbf{a} or \mathbf{b} to be True, either \mathbf{a} or \mathbf{b} must be true

- Let's evaluate this expression bool3 = not a

Value of a	Value of bool3
True	
False	

Logical Operators - not

- Let's evaluate this expression bool3 = not a

Value of a	Value of bool3
True	False
False	True

- not a calculates the Boolean value of a and returns the opposite of that

Complex Expressions

- We can put multiple operators together! bool4 = a and (b or c)
- What does Python do first?
- Computes (b or c)
- Computes a and the result

Order of Operations (All)

Operator(s)			Priority
**			highest
	/ //	\%	
	+ -		
$\begin{aligned} & < \\ & >= \end{aligned}$	<=	>	
	! =	$=$	
not			
and			
or			lowest

Announcements

- Your discussions start this week!
- Go to your scheduled location and time
- HW 0 is due by Wednesday at 8:59:59 PM
- HW 1 is out on Blackboard now
- You must complete a Quiz to see it
- Due by Friday (Feb 10th) at 8:59:59 PM

